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Abstract 

In this Article we give a qualitative and quantitative explanation of why a train stays on the rails in spite of 

perturbations which could make the wheels lurch and eventually derail it. We show that the stability originates in 

the conical shape of the wheels – a lateral disturbance gives rise to an asymmetric normal reaction from the two 

rails and a resultant restoring force. We first demonstrate translational stabilization in a simple situation where the 

rails are assumed frictionless and the steering motion of the wheel is neglected. Subsequently we develop a more 

comprehensive model, taking this motion into account. It is seen that rolling friction couples the rotational motion 

to the translational one and the original stability gets extended to include both cases. We find approximate formulae 

for the parameters governing stability and show that these are satisfied by a real railway coach to a high degree of 

accuracy.  

*     *     *     *     * 
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Introduction 

‘Why trains stay on tracks?’ One takes this phenomenon for granted but there is no reason why a kilometre long 

train should remain on two narrow rails a metre and a half apart. Occasionally trains do derail with serious and 

sometimes tragic outcomes. A clear understanding of why trains normally do not derail should help in 

understanding why they do and may help in preventing derailments. This paper provides an explanation of what 

keeps trains from flying off the rails. 

General interest in the problem of railway coach stability was aroused by a video of RICHARD FEYNMAN [1] where 

he debunks the flange theory (Fig. 1 left panel) and discusses the conical shape of the wheels (right panel); he 

mentions a translation-rotation coupling in the wheel as the primary stabilizing agent. This coupling is driven by 

rolling without slipping, and hence by frictional forces. The same explanation can also be found in the engineering 

literature [2-10], where it is known as the kinematic oscillation of J KLINGEL. In a 1965 paper, A H WICKENS [4] 

attributes the stability to the normal reaction rather than friction; in a 1998 publication [7] however WICKENS again 

mentions the friction-driven kinematic oscillation as the source of stability.  

 

Figure 1 : Various kinds of railway wheels, all in back view. Left panel shows flanges on cylindrical wheels – a popular misconception. 

Right panel shows a schematic of the actual wheel – the profile is conical. In this and subsequent figures, the conical angle is 

exaggerated for clarity – a typical realistic value is 3o.  

 

In this Article we show that while the translation-rotation coupling definitely exists, the dynamics of the reduced 

system is stable even if its strength is zero. The primary stabilizing agent is in fact the normal reaction. Using the 

dynamic model developed here, we obtain a dimensionless number, depending on the coach mass, size, moment of 

inertia etc. whose value acts as a measure of the coach stability. We show that for a real coach, this parameter comes 

out very close to its maximally stable value. The problem of train stability does not appear in standard texts on 

classical mechanics [11,12]; the only textbook where it features is the elementary [13], which includes a qualitative 

description of the rolling without slipping explanation and mentions an interesting toy demonstration of the 

phenomenon involving plastic cups and metre scales. In our Article, the level of presentation is quite suitable for 

the undergraduate or graduate classical mechanics curriculum. 

 

1  Motion in the absence of friction 

We consider a single axle as in the right panel of Fig. 1, neglecting the flanges as they are only a last resort 

mechanism. This is of course an idealized model of a railway coach but it captures the physics at the heart of coach 

stability. Further complications, some of which we will mention briefly in Section 3, result primarily in changes to 

numerical values of parameters characterizing stability. Thus, they are of great relevance in the design of trains but 

not really suitable as an exercise in an undergraduate or graduate classical mechanics course. The axle is 

conceptually replaced by a rigid double cone (shown in the Figure) which moves on horizontal rails (assumed ideal), 

making contact with them at two points. The initial state (whose stability we want to examine) features the cone 

(hereafter ‘double’ implicit) moving forward ( )−ŷ  sitting symmetrically between the two rails and facing dead 

forward. An isometric view of the cone is shown in Fig. 2. The corresponding orthographic projections are in Fig. 3, 

which also introduces the definitions of the axes. Two perturbations on this reference configuration are of interest 

– a translational perturbation which is the x-coordinate xCM of the cone centre of mass (CM), and a steering 

perturbation which is the yaw angle φ made by the cone with the forward direction. The relevant constants for the  
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Figure 2 : Isometric view of 

the double cone rolling along 

rails. The view is from the 

right back side. The direction 

of motion is shown by the 

arrow. To characterize the 

orientation of the cone after 

perturbations, we will use 

Euler angles – θ will be the 

angle of “bank” (i.e. tilt from 

the horizontal, about an axis 

parallel to the rails) and φ the 

angle of “yaw” (about a 

vertical axis). The contact 

circles between the cone and 

the rails are also indicated. 

The rails are shown as having 

finite width only for clarity; 

the analysis will treat them as 

having negligible width. 

Figure 3 : The perturb-

ations xCM (back view) 

and φ (top view). Solid 

and dashed lines 

denote new and 

reference configur-

ations respectively. 

Blue lines indicate the 

circles of contact in the 

two configurations. 

TOP VIEW : Note that 

the contact circle is 

inclined after the 

rotation. BACK VIEW : 

Note that xCM is 

positive and θ negative 

as per the axis 

conventions. Also, the 

radius of the contact 

circle increases at the 

left contact point and 

decreases at the right. 



 
4 

 

problem are 2h, the separation between the two rails, r0, the radius of the cone-rail contact circle in the default state, 

α, the semi-vertical angle of the cone and the cone mass and its various moments of inertia.  

To highlight the role of normal reaction we take the rails to be frictionless. In this case there cannot of course be any 

rolling without slipping. Hence, if the cone is found to be stable in this situation, it will prove convincingly that pure 

rolling is not an essential condition for train stability. Ignoring steering, we confine the analysis to the x-z plane, 

studying the response to a perturbation in the x-direction (as in the full problem). Like every two-dimensional 

mechanics problem, this has three degrees of freedom (DoF) : the x and z coordinates of the cone CM and the bank 

angle θ made in the plane about the y-axis. If we (realistically) take the mass of the cone to be huge, then there are 

also two constraints : the cone must remain in contact with both the rails at all times. Thus, the problem is 1DoF; 

we will engineer xCM to be the chosen one.  

The mathematical form of the actual constraint equations satisfied by the double cone is non-trivial, so we will use 

a physical argument to obtain a simplified but sufficiently accurate form. Starting from the reference configuration, 

suppose we perform the θ rotation alone keeping both xCM and zCM fixed at zero. Now if α is small (it is generally of 

the order of 0.05 radians) the cone looks almost like a needle. Then, for small positive θ, all points on the ‘bottom of 

the cone’ in the back view of Fig. 3 and lying to the left of the centre will go down by a distance xθ while all points 

on the cone bottom lying to the right of the centre will go up by distance |−xθ|. In particular, the point at the original 

x-position of the left rail will move down hθ while the point at the original x-position of the right rail will move up 

hθ. Now forget the rotation and suppose we perform a x-displacement of the CM alone with both other variables 

fixed at zero. Then, the point on the cone bottom at the x-position of left rail will move down xCMtanα while the point 

at the x-position of the right rail will move up xCMtanα. Now if the rotation and translation are both applied, for a 

special relation between θ and xCM, the upward and downward motions of the two points at the respective x-

positions of the two rails will both simultaneously cancel, implying that the cone remains on both rails and satisfies 

both constraints. Since the z-displacement of the CM did not even enter the picture, it must be zero. Thus we have 

the relations :  

 
α

θ α θ= − ⇒ = − tan
tanCM CMh x x

h
   , (1a) 

 0=CMz    . (1b) 

 

  

 

Figure 4 : Free body diagram of the cone, in the x-z plane (back view). Red lines denote forces, orange their respective components. 

The forces are not to scale and labels indicate their magnitudes (the lines represent the directions). Yellow lines are for dimensioning. 

Recall that θ is negative for the configuration shown. 
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We can now construct the free body diagram of the system, Fig. 4. The only forces acting on the cone are the normal 

reactions with magnitudes N1 and N2 from the left and right rails respectively. These reactions must be normal to 

the cone in addition to the rails – for the ideal rail considered here, any vector lying in the x-z plane qualifies as a 

bonafide normal. In terms of the reactions we can write the equations of motion, starting with the forms which are 

valid in the absence of constraints. The x force balance is 

 ( ) ( )1 2
α θ α θ= − − + +ɺɺ sin sinCMmx N N    , (2) 

where m is the mass of the double cone. The z force balance is 

 ( ) ( )1 2
α θ α θ= − + + −ɺɺ cos cosCMmz N N mg    . (3) 

 

The torque balance is trickier due to the possible presence of gyroscopic effects but we note that the value of Ixx 

involved is that of the axle and the wheels; on the other hand the value of Iyy involved in the θ rotation is that of the 

coach as a whole. These two moments of inertia are perhaps in the ratio of 10000:1 in favour of the coach and so the 

gyroscopic effect can be neglected. Then we can write the simple torque balance equation, assuming that y-axis is a 

principal axis for the cone and using = ×T r F  to calculate torque, 

 ( ) ( ) ( ) ( ) ( ) ( )0 1 2 1 2
θ α θ α θ α θ α θ = − − + − − − + + + 
ɺɺ sin sin cos cosy CM CMI r N N h x N h x N    . (4) 

Equations (2-4) are the equations of motion of the system. 

From this point onwards it is just a few algebraic steps to the solution. We assume that the perturbations xCM and θ 

are small, so that terms only up to linear order can be retained. This assumption is reasonable – the Grossmann 

Hartmann theorem guarantees that the linear behaviour is always accurate for sufficiently small perturbations, and 

for a train the perturbations had better not grow beyond the linear level if it is to run smoothly in practice. Further, 

the smallness of α means that its trigonometric functions can be linearized. The constraint zCM=0 must be 

substituted into (3), and θ=−kxCM where k=(tanα)/h plugged into (4); the results after this are 

 1 2
+ =N N mg    , (5a) 

 ( ) ( )1 2
α α= − + + −ɺɺ

CM CM CMmx N kx N kx    , (5b) 

 ( ) ( )0 1 2
− = − − − + +ɺɺ ɺɺ

y CM CM CM CMI kx mr x h x N h x N    . (5c) 

These three equations can be used to eliminate the two reactions and get a single equation for ɺɺCMx ; using the value 

of k that equation is 

 0
2

α

α

 
− + = − 

 
ɺɺ

y
CM CM

I mh
mr x mgx

h
   . (6) 

This looks like a harmonic oscillator equation; indeed it is one because from the geometry r0 is clearly less than h/α 

and hence the coefficient of ɺɺCMx  is always positive. Thus, if the double cone on the rails is given a lateral 

perturbation, then that perturbation remains bounded in time and hence the motion is stable. This analysis 

demonstrates incontrovertibly that the normal reaction by itself is sufficient to cause the railway wheel to remain 

stable in response to lateral disturbances.  

 

2  Motion in the presence of friction 

Although the normal reactions accounted for lateral stability, they are unable to generate steering (φ) stability. Since 

the normal reactions should be perpendicular to the rails, in the top view of Fig. 3 the reactions from both rails will 

be parallel to the x-axis. In the presence of a small steering perturbation φ about the z-axis, the two reactions would 

no longer be collinear, hence they would create a torque and amplify this perturbation, causing instability. To rescue 

this situation friction enters the picture, and we now need a quantitative treatment. To set up a framework 

consistent with the application of friction, we must be more specific in our definition of the initial reference state. 

We assume that this state features motion at a constant velocity v0, i.e. the railway coach is traction-free, and that 

the double cone is rolling without slipping on the rails. This implies that the initial angular velocity of the cone must 

be ω0=v0/r0 about the x-axis. With this step taken care of, we must mirror the steps leading to (6). 

Assuming φ to be small, like all the other perturbations, the first observation is that the constraint equation (1) 

remains unchanged. This is because, after the φ rotation, the projections of all dimensions onto the x-z plane involve 

cosφ components, and their deviations from unity are of the second order of smallness. Our next observation 

features the normal reactions. Again referring to Fig. 4, the vertical (z) components of NL and NR (L : left R: right and 
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a distinction has been drawn between the normal reaction vectors and their magnitudes N1 and N2 respectively) 

must remain as they were in the absence of φ rotation (this statement should in fact be true for all φ and not just 

small φ). At the level of accuracy of the calculation in this Article, these components are of size unity, and that does 

not change here. The horizontal components too remain as they were because of the requirement that they be in 

the plane perpendicular to the rails. Linearizing wherever appropriate, we have 

 ( )1 1
α θ= − −N z xˆ ˆ

L N N    , (7a) 

 ( )2 2
α θ= + +N z xˆ ˆ

R N N    . (7b) 

 

Now comes the friction and this is where we will make a big assumption in lieu of a more accurate (and physically 

less transparent) calculation, as in the works of J J KALKER [14]. The ultimate purpose of the friction is to achieve 

rolling without slipping i.e. to ensure that the velocities of the contact points on the cone with respect to the ground 

are both zero. Thus, any relative velocity between contact point and rail will be opposed by the friction. Further, 

since the default state is traction-free by definition, we use the simplest friction law : a force at each contact point 

proportional to the velocity of that point with respect to the ground and opposite to this velocity in sign. This 

simplistic model of friction is no more drastic an approximation than the replacement of complicated dampings in 

vibrating machines by simple viscous dissipation – in both cases the plausibility of the final results is not affected 

by the substitution, and an astute choice of the damping strength gives quantitatively accurate results. 

Working with this simple frictional form, we must calculate the velocities of both the contact points relative to the 

ground. This requires careful geometry : adding the various terms contributing to contact point velocity we get  

 ( ) ( ) ( )0 0
ω α φω α φ= − + + + − + + −v y x y x yɺ ɺˆ ˆ ˆ ˆ ˆtan tanL CM CM CM CMv x r x r x h x    , (8a) 

 ( ) ( ) ( )0 0
ω α φω α φ= − + + − − − − +v y x y x yɺˆ ˆ ˆ ˆ ˆtan tanR CM CM CM CMv x r x r x h x    . (8b) 

These expressions are complicated and we now go about the task of simplifying them. 

The key observation is that v and ω will change from their initial values v0 and ω0 on account of forces and torques 

generated by the normal reaction and friction. However, since the train speed is controlled by the locomotive, a 

feedback between perturbation and speed cannot (and should not) enter the evolution equations for the 

perturbations – they must be stable independent of the existence of such a coupling. This motivates us to replace v 

and ω by v0 and ω0 in (8) and neglect all dynamics of these variables. Doing this substitution, using that v0=ω0r0 and 

completely linearizing (8) we get 

 0 0
ω α ω φ φ= + − +v x y x yɺ ɺˆ ˆ ˆ ˆ

L CM CMx x r h    , (9a) 

 0 0
ω α φω φ= − − −v x y x yɺ ɺˆ ˆ ˆ ˆ

R CM CMx x r h    . (9b) 

Note that the term αxCM, though it appears quadratic, cannot be dropped because α is a small constant and not a 

small variable. 

This is much simpler than (8) but we are not done yet. When we substitute these velocities into the friction 

constitutive relation, we will be getting some terms which are proportional to xCM and φ and some which are 

proportional to their derivatives. Now, the whole thing will eventually enter the right hand sides of equations for 

ɺɺ
CMx  and φɺɺ , and in this kind of structure the stability is determined principally by the coefficients of the variables 

themselves rather than their first derivatives. The latter amount to damping terms by default while the former can 

constitute a harmonic oscillator or a harmonic repeller (imaginary frequency, exponential solutions) depending on 

the properties of the coefficients. Now if the system is an oscillator, the damping will cause the bounded solutions 

to behave even better and become zero in time; if the system is a repeller, the damping will not rescue the ill-

behaved growing solutions. Hence the terms of primary interest in (9) are the ones featuring xCM and φ rather than 

their derivatives, and we will write the frictional force taking only these into account. Now imposing the constitutive 

equation f=−γv where γ is the damping coefficient, we have 

 0 0 0
γαω γω φ= − +f y xˆ ˆ

L CMx r    , (10a) 

 0 0 0
γαω γω φ= +f y xˆ ˆ

R CMx r    . (10b) 

Thus all the forces on the double cone have been determined. 

The next step is the determination of the torques. This time both Ty and Tz will be relevant, the former being equal 

to θɺɺyI  as before and the latter to φɺɺzI , where Iz is the moment of inertia about the z-axis (assumed principal). Since 

both these angular momenta are small, there is no question of gyroscopic coupling between the two. The position 
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vectors from the centre of the cone to the left and right contact points are found from basic geometry and projection 

arguments similar to the preceding ones; they are 

 

 ( ) 0
φ= − + −r x y zˆ ˆ ˆ

L CMh x h r    , (11a) 

 ( ) 0
φ= − + − −r x y zˆ ˆ ˆ

R CMh x h r    . (11b) 

Crossing these with the total forces (reaction and friction) at left and right contacts points gives the torques, and in 

terms of the resultant forces and torques we have the following equations of motion of the double cone : 

 1 2
= + −ɺɺ

CMmz N N mg    , (12a) 

 ( ) ( )1 2 0 0
2α θ α θ γω φ= − − + + +ɺɺ

CMmx N N r    , (12b) 

 ( ) ( ) ( ) ( )2

0 0 0 1 2 1 2
2θ γω φ α θ α θ = − + − − + − − + + 

ɺɺ
y CM CMI r r N N h x N h x N    , (12c) 

 ( )0 1 2
2 2φ γ αω α φ= − + +ɺɺz CMI h x N N h    . (12d) 

 

It is now a simple matter to impose the constraints, eliminate the normal reactions and obtain a pair of coupled 

second order differential equations for xCM and φ; they are 

 
0 0

0

2
2

α γ ω
φ

α α

 
− + = − + 

 
ɺɺ

y
CM CM

I h rmh
mr x mgx

h
   , (13a) 

 0
2 2φ γ αω αφ= − +ɺɺz CMI h x mgh    . (13b) 

The substitution Y=hφ now adds clarity to the presentation by making the above system dimensionally 

homogeneous; expressing it in a matrix form we have : 

 

0 0

2
0 0

2

2

0

22

2 2

γω

α α
α

α α

γ αω α

− 
  
 − + − +    
 = −     
    
 − 
 

d

d

y y

CM CM

z z

rmg

I Imh mh
mr mrx xh h

Y Yt
h mgh

I I

   . (14) 

This is the governing equation of the double cone in the presence of friction considering both lateral displacement 

and steering motions.  

Equation (14) describes two coupled second order systems. What we want to do is express it in terms of new 

variables, Z1=axCM+bY and Z2=cxCM+dY where a,b,c,d are constants, such that the equation acquires a structure 

1 1 1
= −ɺɺZ E Z  and 

2 2 2
= −ɺɺZ E Z . Now, if E1 and E2 are real and positive, then both are like harmonic oscillators where 

solutions remain bounded in time; in all other cases the system is a harmonic repeller where solutions blow up. 

Expressing (14) as  

 = −X XKɺɺ    , (15) 

we now invoke a theorem in linear algebra which says that this can be written as 

 

( )

1

2

 
= 

 

= −

X

X X

P

P D Pɺɺ

Z

Z    , (16) 

where D is a diagonal matrix with elements E1 and E2 which are the eigenvalues of K and P is a matrix whose 

columns are the eigenvectors of K. This has an uncoupled structure, and for stability we want E1 and E2 to be both 

real and positive. (We note that this diagonalization is exactly what is done to find the normal modes of a coupled 

spring mass system.)  

Using the standard formula for the eigenvalues in terms of the trace Tr and the determinant Det of K, we have 

 ( )1 2
2

1 2

4

2

± −
=

/

,

Tr Tr Det
E    , (17) 

If Det is negative, then the surd will have greater magnitude than Tr and one of the eigenvalues will come out 

negative. When Det is increased to zero, the negative eigenvalue just becomes zero. As Det turns positive, the surd 

becomes smaller in magnitude than Tr and hence both roots come out positive, which is what we want. This regime 



 
8 

 

will not last indefinitely however. As we continue increasing Det, the surd will eventually become zero when Det 

equals 1/4 the square of the trace; any further increase in Det will make the eigenvalues imaginary which is again a 

useless operating regime. These considerations indicate that the driving parameter is in fact a dimensionless 

number, the ratio of the determinant of K to the square of its trace. We call this ratio λ. Since operation is stable for 

λ lying between 0 and 1/4, an optimally stable railway coach should logically have 

 
2

1

8
λ = =Det

Tr
   , (18) 

as far away as possible from either region of instability. Within the stable region, the primary source of stability is 

K11, which arises from the normal reaction (this quantity had also appeared in the frictionless analysis and it is 

independent of γ), and the frictional coupling splits this stability among both modes of motion. Thus it is indeed the 

normal reaction and not friction which is primarily responsible for the train’s stability. The ratio λ is an indicator of 

the strength of the coupling relative to the strength of the self-stabilizing action – if it is too weak, the steering mode 

is unstable while if it is too strong, it overcomes the restoring tendency of the reaction and drags both modes of 

motion into instability.  

 

3  Discussion of approximations and comparison with reality 

Our model has involved considerable approximations, foremost among them being the simplified friction model 

and the restriction to a single-axle treatment ignoring the effect of the bogies. The friction model is qualitatively 

correct because it opposes relative motion between wheel and rail, which is what any friction would always do. The 

nature of this opposition would in reality be different from our simple formula (as in Reference [14]), but the 

direction of the force – restoring or augmenting – which is what ultimately determines stability, would remain 

unchanged.  

 

Figure 5 : Top view of a bogie. The two axles are modelled as double cones and they are connected by a rigid truss. The black solid 

lines indicate a bogie-fixed axis. The dotted lines show how their position and orientations change for each of the two bogie 

perturbations considered here. 

 

As for the bogie issue, we consider a rigid bogie with two identical axles attached to the ends, shown in Fig. 5. Once 

again, there are two modes of motion in this system – translation X and steering Φ of the bogie as a whole. Since the 

system is linear, the response to a combination of translation and steering can be written as a sum of the two 

individual responses. First, suppose the bogie is displaced to the left with no steering. Then, each axle looks like that 

of Fig. 4 and as per (13a) experiences a restoring force, which is proportional to X through a negative constant −P. 

Since this force is the same for both axles, they do not generate a moment about the bogie centre of mass. As per 
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(13b), the displacement also creates a torque on each axle, which is proportional to X through another negative 

constant −R. Since the bogie is rigid, the torques of the two axles add and the resultant torque goes into the equation 

for Φɺɺ . Thus, in the presence of a displacement perturbation alone, we have a structure like 

 
( )
( )
2

Φ 2

= −

= −

ɺɺ

ɺɺ

/

/

X P M X

R J X
   , (19) 

where M and J are the mass and moment of inertia of the bogie respectively. Now suppose that the bogie is given a 

steering perturbation Φ with no displacement. Then the two axles experience a translational displacement by Φ±l  

where 2l is the length of the bogie. Again, from (13a), the force on each axle on account of this displacement is Φ∓Pl

; since they are equal and opposite for the two axles, they cancel and the net force on the bogie is zero. These forces 

do have a finite torque however, and it opposes the displacement; from the geometry, its value is 2
2 Φ− Pl . Over and 

above this, (13a) says that there is a force on each axle due to its steering perturbation; this is proportional to Φ 

through positive constant Q, and total force on the bogie is the sum of the forces on the axles. Finally, from (13b) 

the steering perturbation Φ on each axle gives rise to a torque proportional to Φ through some positive constant S. 

Adding all these, 

 
( )
( )( )2

2 Φ

Φ 1 2 2 Φ

=

= − +

ɺɺ

ɺɺ

/

/

X Q m

J Pl S
   . (20) 

The two equations can now be combined into a matrix : 

 ( )2
2

ΦΦ

−    
= −     −      

ɺɺ

ɺɺ

/ /

/ /

P m Q m XX

R J Pl S J
   . (21) 

Again, the system will be stable if both the eigenvalues of the matrix above are positive and real. This matrix is 

clearly related to the one in (14); if that is stable, this too is likely to be so, unless the bogie dimensions are designed 

pathologically. Analogous calculations can yield results for bogies consisting of 3, 4 or more axles (common in 

erstwhile steam locomotives). The main thing to note is that the basic conclusions are not substantially affected by 

the presence of bogies. In addition to this, bogies pose definite advantages when stability to pitching motions 

(rotation about a horizontal axis perpendicular to the rails) is considered [15] but the treatment of these will take 

us too far afield.  

To validate the simplifications and approximations which we have made, we now perform a comparison of our 

results (14-18) with values from a realistic coach. If the agreement is good, then our model is valid while if the 

agreement is poor, then we will need refinements. An LHB coach used on Rajdhani Express trains of Indian Railways 

and shown in Fig. 6, has the following dimensions and weights [16]: 

 

Figure 6 : LHB coach used on Rajdhani Express. This image is taken from Reference [15]. 

 

• mass 45 tonnes 

• length 24 m 
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• width 3.2 m 

• height 4.0 m 

• wheel radius 0.42 m 

• track gauge 1.68 m 

• cone angle 0.05 rad 

Using these values and assuming the mass to be uniformly distributed throughout the coach, we get Iy=278000 kgm2 

and Iz=2198000 kgm2. As a ballpark value of γ, we note that generally a train has a peak adhesion factor of 40% and 

we assume that this maximum friction occurs at a typical operating speed of 20 m/s (about 70 km/hr), which lies 

halfway between zero speed and the maximum permissible speed of the coach; this gives γ=10000 N/(m/s) 

approximately. Plugging these numbers into (14) yields the eigenvalues 1.0 and 0.18 s−2 which are both positive, 

implying that Rajdhani Express trains are stable (as we indeed know they are). It is interesting to now compute the 

ratio λ – for the LHB coach this actually evaluates to 0.124, very close to the optimal value of 1/8 obtained above.  

Now in a realistic situation, the friction coefficient is a given and the dimensions and masses too are to a large degree 

invariant from coach to coach. The real variable is the cone angle – in the early days of Indian Railways this was 

fixed at 1 in 20 (0.05 radians) by a British-derived convention based on extensive experimental trials. Our simple 

theory is able to vindicate this choice as being optimally stable. In Fig. 7 we present a graph of the ratio λ as the 

angle α is varied while all other parameters are held constant. The numerical values are as for the LHB coach. It is 

seen that λ equals 1/8 at a value of α very close to 0.05. For design and construction of new high speed train sets etc. 

where parameter values can be significantly different from a conventional setup, the criterion (18) may be taken as 

a starting point to evaluate stability of the train. 

 

Figure 7 : The blue line shows λ vs α while green is the constant quantity 1/8. The two curves intersect very close to α=0.05. 

 

This strong numerical agreement bolsters our argument nicely.  

Finally we make a comment on the applicability of Grossmann Hartmann theorem which we invoked to justify the 

linearized analysis. The theorem is valid only if the eigenvalues have nonzero real parts. However it appears from 

(14) that both eigenvalues here are purely imaginary, thereby nullifying the theorem application. This apparent 

contradiction is resolved by noting that (14) was obtained by specifically dropping the damping terms from (9) and 

retaining only the position-dependent terms. In reality, both the eigenvalues will acquire negative real parts from 

the damping superposed on the imaginary components from (14) and thus the application of Grossmann Hartmann 

theorem remains valid. 
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In conclusion we would like to highlight a comment by WICKENS [7], which is that nobody knows who invented this 

mechanism. It is strange indeed that the identity of the inventor of coned wheels, without which trains would not 

have existed, is shrouded in anonymity. 

*     *     *     *     * 
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